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Abstract

It has been demonstrated previously that the surface-to-volume ratio S=V can be determined from the derivative of the time-

dependent diffusion coefficient DðtÞ, in the limit t ! 0. Several questions arise concerning the practicality of determining S=V by

NMR. In particular, how large are the errors generated by (1) working outside the t ! 0 limit and (2) measuring D outside the b ! 0

limit, both for narrow and full-width gradient pulses? Here b is c2G2d2D for narrow pulses and c2G2t3=12 for broad pulses. These

questions are addressed by random-walk computer simulations and numerical calculations in geometries relevant to small-airways

of lung. The results demonstrate that one can work well outside the t ! 0 and b ! 0 limits, provided 10–20% accuracy in the

measured S=V is sufficient. Emphasis is placed on the useful range of times t for which NMR determinations of lung S=V are

feasible.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

The time dependence of the diffusivity DðtÞ contains

much information [1,2] about the restrictions to diffusive
motions. In particular Mitra, Sen, and Schwartz (MSS)

showed that at short times t

DðtÞ

D0

¼ 1� 4

3d
ffiffiffi
p

p
� �

S

V

ffiffiffiffiffiffiffi
D0t

p
; ð1Þ

where d is the dimensionality, D0 is the unrestricted
diffusion coefficient, and S=V is the surface-to-volume

ratio [3,4]. The MSS formula is the first two terms in a

Taylor series for DðtÞ in powers of
ffiffi
t

p
; there are higher-

power terms important at longer times, including cor-

rections for curvature and corners of the surface [3,5,6].

Strictly, the term involving S=V is essentially the deriv-

ative of DðtÞ with respect to
ffiffi
t

p
, in the limit of zero time t.

A simple physical picture [5] of the S=V term is based on
the volume fraction of spins within ‘‘striking distance’’
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of the walls. The MSS equation refers to an

isotropic situation with DðtÞ defined by mean-squared

displacement: DðtÞ ¼ ðDrÞ2=2dt. This is equivalent to the

diffusivity measured by pulsed-field gradients (PFG) in

the narrow-pulse (NP) limit for b ! 0 (b has the usual
meaning and is conjugate to D; for narrow gradient

pulses of amplitude G, width d, and separation D, b is

c2G2d2D, with d � D). We note that working in the

small b limit guarantees that the signal attenuation is

small, so all spins are weighted equally and the true

average diffusivity is obtained.

The case of static (dc)-field gradients with a p-pulse for
refocusing is equivalent to the experiment where full-
width gradient pulses are used, turning off only long en-

ough for the RF pulses and spin-echo acquisition. This

wide-pulse or spin-echo (SE) case has been treated [6]; in

the short-time limit, an equation analogous to (1) results:

DðtÞ

D0

¼ 1� 32ffiffiffi
p

p
d35

2
ffiffiffi
2

p
� 1ffiffiffi
2

p
 !" #

S
V

ffiffiffiffiffiffiffi
D0t

p
: ð2Þ

Here the time t is twice the spacing s between the RF

pulses envisioned in [6]. Again, this formula is an aver-
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Fig. 1. Cylindrical geometry used for simulations of diffusion. The

cylinder axis runs left–right. Each section of length L is separated from

neighboring sections by partially open, washer-like partitions.
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age diffusivity, so it applies in the small b limit (for static
field gradients or full-width gradient pulses, b is

c2G2t3=12). The coefficient in square brackets in Eq. (2)

is slightly smaller than that in (1), by a factor of 0.8866.

This decrease is expected, because the mean diffusion

time in the wide pulse case is somewhat smaller than t.
NMR methods are routinely used [7–10] to measure

DðtÞ, so it seems that NMR determinations of S=V
should be straightforward using the results (1) and (2).
We assume the free diffusivity D0 is known by mea-

surements on the same gas or gas mixture in bulk,

outside the restricting structure. Eqs. (1) and (2) can be

inverted to yield S=V from diffusion measurements in

the narrow-pulse and spin-echo cases:
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However, two important issues need to be addressed.

1. Experimentally, it is impossible to evaluate Eqs. (3a)

and (3b) in the limit of zero time. Fundamentally, this

involves measuring the difference between nearly

equal quantities, DðtÞ and D0, which is notoriously dif-

ficult in the face of measurement noise. In addition,

working at small t requires very intense gradients

with (at least in the narrow-pulse case) very small rise
and fall times, eventually outstripping the capabilities

of any hardware. Thus, we ask how large can t be-
come (or how far can DðtÞ=D0 fall below one) for for-

mulas (3a) and (3b) to remain valid, to within an

allowable range of error?

2. In a system with restricted diffusion, a distribution of

D values is present, with smaller D characterizing

spins near the restricting walls. Thus, one neither ex-
pects nor obtains [11,12] single-exponential decays of

signal amplitude versus b value. One can obtain the

average diffusivity, equally weighted across all spins,

by using

D � �1

b
lnðS=S0Þ; ð4Þ

in the limit of zero b, where S is the b-dependent at-
tenuated signal amplitude and S0 is the b ¼ 0, unat-
tenuated amplitude. Of course, working at small b
involves taking the difference of nearly equal quan-

tities, S and S0, which is unreliable with real (noisy)

data. So we ask how much error is generated by de-

termining D in a more practical way, such as

D � 1=b�, where b� is the value of b for which the

signal amplitude Sðb�Þ is 1=e of S0?

Working with narrow gradient pulses is impractical in
the short time limit, t ! 0. Narrow pulses require ex-
tremely large gradient amplitudes, for a given b value.
Because of the gradient coil inductance, excessively large

voltages are required to switch the gradient. Corrections

for finite pulse widths have been reported [13]. Thus, the

wide pulse case [14,15] is more relevant to experiment, in

general. This includes the technically less-demanding

case of static gradients [16,17] used with a p-refocusing
RF pulse (spin echo, SE).

We investigate here the importance of these practical
issues in applying the results (1) and (2) to NMR de-

terminations of S=V . In addition to numerical calcula-

tions, restricted gas diffusion is simulated by computer-

generated random walks. We focus on geometries that

are relevant to the small-airways of lungs, in which 95%

or more of the gas resides [18,19]. NMR/MRI mea-

surements have shown the diffusion of 3He gas in lungs

to be substantially restricted in healthy lungs. Airway
expansion and tissue destruction in the disease emphy-

sema [20] result in large increases in the measured dif-

fusivity [21–23]. An MRI measurement of surface-to-

volume S=V on a pixel-by-pixel basis would be very

valuable for understanding the changes in emphysema-

tous lungs, both in general and for specific patients. At

present, the only in vivo lung S=V measurements are

global (entire lung) and are taken from the rate of CO
uptake (so-called diffusing capacity) [18,20].
2. Methods

Computer simulations of random-walks were per-

formed on N independent particles, with N typically

104–105, in the cylindrical geometry displayed in Fig. 1.
As introduced elsewhere [23], this is a reasonably accu-

rate and easily implemented representation of a typical

small-airway lined with alveoli. In particular, the use of

infinitely long, straight cylinders is a good approxima-

tion for the short diffusion times relevant to determi-

nations of surface-to-volume S=V . Each particle was

assigned a random starting position and was allowed to

move at intervals of time Dt; Dt was 0:01ls in most of
the simulations. At each step, the particle was moved

with equal probability in one of six directions

ð�x;�y;�zÞ. The step length was fixed at
ffiffiffiffiffiffiffiffiffiffiffiffiffi
6D0Dt

p
with
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D0 ¼ 0:88 cm2/s ¼ 88lm2=ls, which describes 3He gas
dilute in air or N2 (thus a step length of 2:3lm). If the

selected move would carry the particle through any wall,

the move was rejected and the particle remained at the

initial position. This style of simulation is crude for each

step: fixed jump distance, only six step directions, and no

attempt to have the particles properly reflect from the

walls. The very short-time step Dt (and the corre-

spondingly large number of steps in a given simulated
time) make these issues insignificant. In our view, a short

Dt with a simple jump-algorithm, as used here, is the

preferred method.

While the simulations were performed for cylinders of

specific sizes with a gas of specific free diffusivity D0, the

presented results can be scaled to yield results for other

D0 values and cylinder sizes. Consider the transverse

diffusivity [23], which depends only on R;D0, and time t
(specifically independent of r and L; see Fig. 1). Two

systems A and B are said to be in correspondence (as in

thermodynamic corresponding states [24]) if

D0;AtA
R2
A

¼ D0;BtB
R2
B

; ð5Þ

because D0t=R2 is the only dimensionless parameter [25]

characterizing the problem. Thus, the time-dependent

transverse diffusivities of A and B are related by the di-

mensionless ratios

DAðtAÞ

D0;A
¼ DBðtBÞ

D0;B
; ð6Þ

provided the times tA and tB are related as in Eq. (5).

Similar scaling applies for the longitudinal diffusion

(along the tube axis in Fig. 1), except that DðtÞ now de-
pends on D0; t; R; r, and L. So, systems are in corre-

spondence provided they obey Eq. (5) and have similar

shapes (i.e., the same ratios L=R and r=R).
The simulations were used to calculate mean-squared

displacements in each of the directions x; y, and z. Time-

dependent diffusivities were defined from the mean-

squared displacements as

DNP
x � ðDxÞ2=2t and

DNP
3 � ðDxÞ2

h
þ ðDyÞ2 þ ðDzÞ2

i
=6t;

ð7Þ

in 1-D and 3-D. The NP (narrow pulse) designation

serves to remind that PFG experiments with narrow
pulses in the b ! 0 limit yield the diffusivity values from

mean-squared displacement, (7). In addition, normal-

ized NMR signal amplitudes S were calculated in the

wide-pulse or spin-echo (SE) case from the NMR spin-

precessional phase shifts w, with S ¼ heiwi ¼ hcoswi,
where the average is over the N particles in the simula-

tion. In general, for a gradient along the x-axis,

wðtÞ ¼ c
Z t

t0¼0

Gðt0ÞXðt0Þ dt0; ð8Þ
where Gðt0Þ is the effective gradient (i.e., the actual gra-
dient with sign inversion at the p pulse). We employ a

static (constant) actual gradient, corresponding to a

square wave effective gradient: G from time zero to t=2
and �G from t=2 to t. The integral is re-written as a

discrete sum

wðtÞ ¼ cGðDtÞ
XT=2
j¼0

xj

 
�
XT
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!
; ð9Þ

where Dt is the time step duration and j is the (integer)

time-step-number, with T � t=Dt. For this gradient

waveform, the weighting parameter b is given [26] by

c2G2ðt=2Þ32=3. Thus, the phase w for any particle can be

expressed in terms of its trajectory and b,

wðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12b=t3

p
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For weak b, resulting in small spin phases w, hcoswi is
1� hw2i=2. Equating this to e�bDx ¼ 1� bDx, we obtain

the NMR-determined DSE
x with constant gradients, ta-

ken in the b ! 0 limit,

DSE
x ¼ 6ðDtÞ2=t3

h i XT=2
j¼0

xj �
XT
j¼T=2

xj

" #2
; ð11Þ

where the overbar denotes averaging over all N parti-

cles. We note that the mathematics of the b ! 0 limit are

the same as the Gaussian phase distribution approxi-

mation, for arbitrary b. Eq. (11) allows DSE to be com-
puted without explicitly considering the b ¼ 0 limit.

The above discussion can readily be generalized to

gradient directions other than x. For an assortment of

randomly oriented objects, the three-dimensional pow-

der average wide-pulse diffusivity DSE
3 can be computed

in a form similar to Eq. (11) as

DSE
3 ¼ 6ðDtÞ2=t3

h i XT=2
j¼0
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XT
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We note that many simulations of bounded diffusion

have been reported [11,16,27], some specifically relevant

to the MSS equation for surface-to-volume ratio [3,4,6].
Analytical approaches to restricted diffusion have been

reported [23,28], although these assume the Gaussian

phase approximation. The work here is focused upon

addressing the issues enumerated at the end of the In-

troduction, to assess the feasibility of MRI measure-

ments of local surface-to-volume ratio in lungs.

All determinations of initial positions and the direc-

tions of each step were performed with the random
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number generator provided by the GSL (GNU Scientific
Library), a numerical methods library for the C pro-

gramming language.
3. Tests

The computer simulation algorithm was thoroughly

tested to ensure its proper functioning. (i) For open
tubes (r ¼ R in Fig. 1), the longitudinal diffusion DNP

z in

Eq. (7) was found to be very close to D0. The typical

error was about 1%. (ii) For closed tubes

(L ¼ R ¼ 150lm and r ¼ 0), the long-time asymptotic

values of ðDzÞ2 and ðDxÞ2 were compared to the theo-

retical values of L2=6 and R2=2, respectively. Agreement

to better than 1% was found. (iii) We explicitly tested the

scaling formula (6), by comparing transverse diffusivities

of the same gas in cylinders of R ¼ 150 and 350lm.

After scaling times in the larger cylinders by ð2:333Þ2,
according to Eq. (5), the data were the same to within

the numerical noise. (iv) Long-time longitudinal diffu-

sivity in the structure of Fig. 1 is bounded by DzðtÞ 6D0

because of the restrictions by the partitions, and

DzðtÞ PD0ðr=RÞ2. This last bound uses the fraction of

open area of the partitions; DzðtÞ would equal D0ðr=RÞ2
in the case of L � r. The above inequalities were always
obeyed in the long-time limit.
Fig. 2. Three-dimensional powder average diffusivities (at left) and surface-to-

diffusion-measuring time. Results are shown for the cylindrical geometry of F

treated are closed partitions ðr ¼ 0Þ, partly open partitions (r ¼ 105lm, so the

The solid curves are from mean-squared displacement and correspond to the

simulated NMR signal decays using a static gradient in the b ¼ 0 limit (wide

S=V calculated from geometry.
4. Results

Simulations have been performed on cylinders with

the geometry presented in Fig. 1 for a wide range of

parameters. Representative results appear in Fig. 2 for

the cases of closed cells ðr ¼ 0Þ, partly open cells

(r ¼ 0:7R), and fully open cells (smooth-wall tubes,

r ¼ R), from top to bottom. Diffusivities calculated from

the random-walk mean-squared displacements during
time t ðDNP

3 Þ from Eq. (7) appear as solid curves. Open

circles represent the diffusivity calculated from the

NMR signal in the b ¼ 0 limit, with a static-field gra-

dient (spin echo or wide pulse, SE). All the diffusivities

in Fig. 2 are three-dimensional orientational averages,

using Eqs. (7) and (12). We note that the trends evident

in the results of Fig. 2 are confirmed in the many other

simulation results obtained but not shown here.
All of the diffusivities in Fig. 2 approach the free

value of D0 ¼ 88lm2=ls at short times, as expected. In

the case of DSE
3 , where the first point is at t ¼ 20ls, the

D0 value is never obtained. We note that the data should

decrease as
ffiffi
t

p
at short times, resulting in an infinitely

negative slope at zero time. At short times, DSE
3 de-

creases more slowly than does DNP
3 . This is to be ex-

pected, since the NMR measurement with static
gradients (as opposed to the delta-spike gradients, NP)

measures a displacement over a time interval somewhat
volume ratios S=V (at right) from Eqs. (3a) and (3b), as functions of the

ig. 1 with R ¼ 150lm and L ¼ 150lm. From top to bottom, the cases

opening is 49% of the total area), and fully open (no partitions, r ¼ R).
narrow pulse (NP) NMR PFG experiment; the open circles are from

pulse or spin echo, SE). At right, the S=V is normalized by the actual



Fig. 3. NMR signal decays using full-width gradient pulses (SE case)

from random-walk simulations. The straight solid lines represent the

slope in the b ¼ 0 limit; the negative of this slope is the average dif-

fusivity, weighting all particles equally. The open circles are the natural

logs of the normalized signal amplitudes S=S0 as functions of b. Up-

per: diffusion transverse to cylinder axis (R ¼ 150lm, r and L are ir-

relevant). Middle: diffusion along axis, with L ¼ 150lm, and closed

partitions ðr ¼ 0Þ. Lower: diffusion along axis with partially open

partitions (L ¼ 150lm, R ¼ 150lm, and r ¼ 105lm). In all cases, the b
value at which the signal has decayed by 1=e is quite close to the value

from the straight line, so the 1=e value will yield a very close estimate

of the average diffusivity.
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smaller than t, as discussed below Eq. (2) . Hence, for a
given decrease in DðtÞ, the static gradient NMR experi-

ment requires a somewhat larger time t. At long times,

when most gas atoms have contacted the walls one or

more times, DSE
3 becomes smaller than DNP

3 . This de-

crease is due to motional averaging [23,26] during each

half of the NMR experiment (between the RF pulses

and from the p-pulse to the echo). Such averaging during

each gradient lobe clearly cannot occur with delta-spike
gradient pulses (NP measurement). At very long times,

one expects D3 to be determined completely by longi-

tudinal motion, because the transverse motion is fully

restricted. The t ! 1 limiting values of D3 of the closed

and open cases are thus expected to be 0 and D0=3 (or

28:7lm2=ls), respectively. While t ¼ 1000ls is not quite
long enough for these limits to attain, the data approach

the above values.
The DðtÞ data from the left panels of Fig. 2 were used

to calculate the surface-to-volume ratios S=V in the right

panels, using Eqs. (3a) and (3b), for narrow and wide

pulses, respectively. The S=V values are normalized by

the actual S=V calculated from geometry. In all cases,

the S=V values are approximately correct at short times

and decrease at longer times. The decrease is, of course,

due to D3ðtÞ approaching an asymptotic value at long
times, as discussed above.

In the case of the open smooth-wall tube, we con-

firmed that the increase in ðS=V ÞNP above the actual

geometric value of 2=R is explained by including the

correction in the MSS formula (1) for surface curvature

[3]. We note that all of the other cases have corners and

sharp-edged holes on the interiors of the partitions, so

that these cases require additional corrections [3]. We
have not included such corrections, because they involve

curvatures and corner-angles that are not known a pri-

ori to the measurer.

The S=V values derived from DNP
3 are within �15% of

the actual geometrical value for times 6 150 ls. Over the

time window of 0–200ls, the S=V taken from DSE
3 is

within the �15% range. We note that, in all three cases

shown in Fig. 2, this time window can be expressed as
including all values of DSE

3 =D0 greater than 0.6. This is a

surprisingly large region for the validity of a formula

derived for the t ¼ 0, ‘‘barely restricted’’ limit. Indeed,

we note that the 200ls window, for the system of closed

cells, includes values of DSE
3 =D0 as small as 0.25.

NMR signal amplitude decays for the static gradient

spin echo (wide pulse, SE) are presented in Fig. 3. The

time is held fixed as b is varied by varying the gradient
strength. In each case, the straight solid line represents

the slope of the initial decay, the b ¼ 0 limit. Thus, the

negative of this slope is the true average restricted dif-

fusivity, equally weighting all the spins in the sample.

The open circles are the simulated NMR spin-echo de-

cays as functions of b. In some cases, the deviation from

the simple exponential is positive while in others it is
negative. We note that the simulations presented in
Fig. 3 are for N¼ 100,000 particles. The fractional sta-

tistical noise, 1=
ffiffiffiffi
N

p
, is about 0.3%; thus the decays in

Fig. 3 taken out to 2.5 factors of e are relatively free of

noise. This has been verified by repeating the same

simulation several times, in selected cases, with virtually

identical results.

The representative signal decays are displayed in

Fig. 3: (upper) with the gradient transverse to the cyl-
inder axis with R ¼ 150lm and (middle and lower) with

a longitudinal gradient. This choice of cases avoids the
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necessity of forming a powder average signal-decay,
averaging over all cylinder (or gradient) orientations.

The middle panel is for closed end caps (L ¼ 150lm;

r ¼ 0 and R is irrelevant) and the bottom panel is for

partly closed cells (L ¼ 150lm, R ¼ 150lm, r ¼ 105lm,

so the end caps are 49% open fraction of area). For each

case, the decays were calculated at t¼ 60, 100, and

200 ls; the data selected to appear in Fig. 3 are at the

time values showing the largest deviation from single
exponential decay as a function of b.

Over the first factor of e in the decays shown in Fig. 3,

the deviation from the straight line (simple exponential

decay) is very small, less than 5%. Thus, less than a 5%

error will occur if the NMR-determined diffusivity is

taken as 1=b�, where b� is the value of b for which the

signal has decayed by 1=e, instead of the negative of the

slope of the straight line (the b ¼ 0 limit). The largest
deviations we have found in simulating many different

geometries as in Fig. 1 are about 15%, though these

occur with only a few sets of geometric parameters and

time. We note that the deviations considered here are

systematic errors. Measurement noise will result in

random or statistical errors in determining D that may

often be greater than the 5% systematic errors of Fig. 3.

Exact numerical results for the spin-echo (SE) decay
have been reported for a one-dimensional system of

uniformly spaced barriers (L ¼ 150lm, in notation of

Fig. 1), using a matrix-product technique [29]. Those

results have been used here to derive a time-dependent

diffusivity using Eq. (4), for values of bD0 of 0.001, 0.1,

0.5, and 1.0. The DSE
ðtÞ values yield values of S=V using

Eq. (3b) with dimensionality d ¼ 1; the results are pre-

sented in Fig. 4. This graph simultaneously reveals both
Fig. 4. Surface-to-volume S=V from NMR spin echoes (wide pulse or

SE case) using Eq. (3b), normalized to the geometrical S=V . The sys-

tem is a one-dimensional array of partitions spaced 150lm. Exact

numerical calculations of the echo amplitude attenuation were per-

formed at several values of bD0. Time-dependent diffusivity was cal-

culated from Eq. (4).
effects: the inaccuracy in determining DSE
ðtÞ outside the

b ¼ 0 limit and the error in S=V encountered by working

outside the t ¼ 0 limit. For short times and small bD0,

the S=V results are in excellent accord with the geo-

metrical value of 2=L.
At times of 40ls and longer, there is essentially no

dependence on the b value of the deduced S=V . Evi-
dently, the echo amplitude decays here are very nearly

single-exponential. As expected, with increasing time the
S=V value decreases in qualitative accord with the re-

sults of the right side of Fig. 2. We note that these one-

dimensional results cannot be compared directly to the

three-dimensional results of Fig. 2. In addition, the

L ¼ 150lm spacing of the partitions here leads to an

approximately threefold decrease in the characteristic

time scale, compared to Fig. 2, where the diameter is

300lm (see Eq. (5)).
For times shorter than 40ls, the S=V depends on the

value of b, indicating that the echo amplitude decays are

not single-exponential here. This non-exponential na-

ture at short times has been analyzed in a recent work

[12]. In the limit of zero time, this effect results in errors

of 22% in S=V , using bD0 ¼ 1. It must be noted, how-

ever, that the large errors result from the high sensitivity

of S=V to small changes in DSE
ðtÞ in Eq. (3b) at short times

where DSE
ðtÞ and D0 are nearly equal. In real experiments,

this short-time region must be avoided anyway because

S=V would be unduly sensitive to random noise in DSE
ðtÞ .

For S=V values within �15% of the actual geometrical

S=V , with bD0 ¼ 1, times between 10 and 125ls can be

used.
5. Conclusions

Computer simulations of diffusive random-walks and

numerical calculations have explored the time-depen-

dent diffusion coefficient DðtÞ in restricted diffusion. The

chosen geometries are periodic partitions in 1-D for the

numerical work. The simulations modeled the interiors

of cylinders with partially closed, periodically spaced
partitions, a model of lung small-airways. The surface-

to-volume ratios S=V determined from the simulations

using the Mitra–Sen–Schwartz and de Swiet–Sen

formulas (1) and (2), strictly valid only as time t ! 0,

are compared to the exact values of the simulated

geometries.

The first major result is that reasonably accurate S=V
values (within �15%) are obtained well outside the limit
of time t ! 0. For closed vessels, the useful range ex-

tends to the remarkably small value of DðtÞ=D0 ¼ 0:25;
for fully or partially open vessels, the useful range is

somewhat smaller. The errors encountered by working

outside the t ! 0 limit can be reduced by use of the

present results as a guide. Second, the NMR signals in

restricted diffusion are not purely exponentially decaying
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functions of the parameter b. Nevertheless, the difference
between the diffusion values taken from the initial slope

(b ! 0 limit which uniformly weights all spins) and the

1=e point of the decay (an experimentally practical

scheme) remains small in all of our simulations. These

results apply to both the narrow pulse and wide pulse

experiments, the latter being equivalent to a static (dc)

gradient in a spin-echo sequence, which makes minimal

demands on the gradient hardware.
Thus, diffusion-NMR determinations of lung surface-

to-volume ratios using inhaled gases appear to be quite

feasible.
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