ELSEVIER

Available online at www.sciencedirect.com

sc.mce@n.“m

Journal of Magnetic Resonance 169 (2004) 196-202

JMR

Journal of
Magnetic Resonance

www.elsevier.com/locate/jmr

Feasibility of diffusion-NMR surface-to-volume measurements
tested by calculations and computer simulations

Mark S. Conradi,*®* Matthew A. Bruns,* Alexander L. Sukstanskii,®
Samuel S. Gross,* and Jason C. Leawoods®

& Department of Physics, Washington University, St. Louis, MO 63130-4899, USA
® Department of Radiology, Washington University, St. Louis, MO 63130-4899, USA

Received 29 December 2003; revised 14 April 2004
Available online 18 May 2004

Abstract

It has been demonstrated previously that the surface-to-volume ratio S/ can be determined from the derivative of the time-
dependent diffusion coefficient D), in the limit # — 0. Several questions arise concerning the practicality of determining S/V by
NMR. In particular, how large are the errors generated by (1) working outside the # — 0 limit and (2) measuring D outside the b — 0
limit, both for narrow and full-width gradient pulses? Here b is y2G25°4 for narrow pulses and y2G?#/12 for broad pulses. These
questions are addressed by random-walk computer simulations and numerical calculations in geometries relevant to small-airways
of lung. The results demonstrate that one can work well outside the # — 0 and » — 0 limits, provided 10-20% accuracy in the
measured S/V is sufficient. Emphasis is placed on the useful range of times ¢ for which NMR determinations of lung S/V are

feasible.
© 2004 Elsevier Inc. All rights reserved.

1. Introduction

The time dependence of the diffusivity D, contains
much information [1,2] about the restrictions to diffusive
motions. In particular Mitra, Sen, and Schwartz (MSS)
showed that at short times ¢
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where d is the dimensionality, Dy is the unrestricted
diffusion coefficient, and S/V is the surface-to-volume
ratio [3,4]. The MSS formula is the first two terms in a
Taylor series for Dy, in powers of v/7; there are higher-
power terms important at longer times, including cor-
rections for curvature and corners of the surface [3,5,6].
Strictly, the term involving S/V is essentially the deriv-
ative of Dy, with respect to /7, in the limit of zero time .
A simple physical picture [5] of the S/V term is based on
the volume fraction of spins within “‘striking distance”
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/Dot of the walls. The MSS equation refers to an
isotropic situation with D defined by mean-squared
displacement: D, = (Ar)*/2dr. This is equivalent to the
diffusivity measured by pulsed-field gradients (PFG) in
the narrow-pulse (NP) limit for » — 0 (b has the usual
meaning and is conjugate to D; for narrow gradient
pulses of amplitude G, width J, and separation 4, b is
72G26°A, with § < 4). We note that working in the
small » limit guarantees that the signal attenuation is
small, so all spins are weighted equally and the true
average diffusivity is obtained.

The case of static (dc)-field gradients with a n-pulse for
refocusing is equivalent to the experiment where full-
width gradient pulses are used, turning off only long en-
ough for the RF pulses and spin-echo acquisition. This
wide-pulse or spin-echo (SE) case has been treated [6]; in
the short-time limit, an equation analogous to (1) results:

Dy 32 [2vV2-1)\|S
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Here the time 7 is twice the spacing t between the RF
pulses envisioned in [6]. Again, this formula is an aver-
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age diffusivity, so it applies in the small 4 limit (for static
field gradients or full-width gradient pulses, b is
72G?#*/12). The coefficient in square brackets in Eq. (2)
is slightly smaller than that in (1), by a factor of 0.8866.
This decrease is expected, because the mean diffusion
time in the wide pulse case is somewhat smaller than .

NMR methods are routinely used [7-10] to measure
D, so it seems that NMR determinations of S/V
should be straightforward using the results (1) and (2).
We assume the free diffusivity Dy is known by mea-
surements on the same gas or gas mixture in bulk,
outside the restricting structure. Eqgs. (1) and (2) can be
inverted to yield S/V from diffusion measurements in
the narrow-pulse and spin-echo cases:
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However, two important issues need to be addressed.

1. Experimentally, it is impossible to evaluate Egs. (3a)
and (3b) in the limit of zero time. Fundamentally, this
involves measuring the difference between nearly
equal quantities, D, and Dy, which is notoriously dif-
ficult in the face of measurement noise. In addition,
working at small ¢ requires very intense gradients
with (at least in the narrow-pulse case) very small rise
and fall times, eventually outstripping the capabilities
of any hardware. Thus, we ask how large can ¢ be-
come (or how far can Dy;) /Dy fall below one) for for-
mulas (3a) and (3b) to remain valid, to within an
allowable range of error?

2. In a system with restricted diffusion, a distribution of
D values is present, with smaller D characterizing
spins near the restricting walls. Thus, one neither ex-
pects nor obtains [11,12] single-exponential decays of
signal amplitude versus » value. One can obtain the
average diffusivity, equally weighted across all spins,
by using

DETI In(S/So), 4)
in the limit of zero b, where S is the b-dependent at-
tenuated signal amplitude and S, is the » = 0, unat-
tenuated amplitude. Of course, working at small b
involves taking the difference of nearly equal quan-
tities, S and Sy, which is unreliable with real (noisy)
data. So we ask how much error is generated by de-
termining D in a more practical way, such as
D = 1/b*, where b* is the value of b for which the
signal amplitude S(b*) is 1/e of Sy?
Working with narrow gradient pulses is impractical in
the short time limit, # — 0. Narrow pulses require ex-

tremely large gradient amplitudes, for a given b value.
Because of the gradient coil inductance, excessively large
voltages are required to switch the gradient. Corrections
for finite pulse widths have been reported [13]. Thus, the
wide pulse case [14,15] is more relevant to experiment, in
general. This includes the technically less-demanding
case of static gradients [16,17] used with a n-refocusing
RF pulse (spin echo, SE).

We investigate here the importance of these practical
issues in applying the results (1) and (2) to NMR de-
terminations of S/V. In addition to numerical calcula-
tions, restricted gas diffusion is simulated by computer-
generated random walks. We focus on geometries that
are relevant to the small-airways of lungs, in which 95%
or more of the gas resides [18,19]. NMR/MRI mea-
surements have shown the diffusion of He gas in lungs
to be substantially restricted in healthy lungs. Airway
expansion and tissue destruction in the disease emphy-
sema [20] result in large increases in the measured dif-
fusivity [21-23]. An MRI measurement of surface-to-
volume S/V on a pixel-by-pixel basis would be very
valuable for understanding the changes in emphysema-
tous lungs, both in general and for specific patients. At
present, the only in vivo lung S/V measurements are
global (entire lung) and are taken from the rate of CO
uptake (so-called diffusing capacity) [18,20].

2. Methods

Computer simulations of random-walks were per-
formed on N independent particles, with N typically
10*-10°, in the cylindrical geometry displayed in Fig. 1.
As introduced elsewhere [23], this is a reasonably accu-
rate and easily implemented representation of a typical
small-airway lined with alveoli. In particular, the use of
infinitely long, straight cylinders is a good approxima-
tion for the short diffusion times relevant to determi-
nations of surface-to-volume S/V. Each particle was
assigned a random starting position and was allowed to
move at intervals of time Az; Ar was 0.01 us in most of
the simulations. At each step, the particle was moved
with equal probability in one of six directions
(fx, £y, +z). The step length was fixed at v/6DyA¢ with

]

2r 2R
T y
<—L——=

Fig. 1. Cylindrical geometry used for simulations of diffusion. The
cylinder axis runs left-right. Each section of length L is separated from
neighboring sections by partially open, washer-like partitions.
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Dy = 0.88cm?/s = 88 um?/ps, which describes *He gas
dilute in air or N (thus a step length of 2.3 um). If the
selected move would carry the particle through any wall,
the move was rejected and the particle remained at the
initial position. This style of simulation is crude for each
step: fixed jump distance, only six step directions, and no
attempt to have the particles properly reflect from the
walls. The very short-time step Ar (and the corre-
spondingly large number of steps in a given simulated
time) make these issues insignificant. In our view, a short
At with a simple jump-algorithm, as used here, is the
preferred method.

While the simulations were performed for cylinders of
specific sizes with a gas of specific free diffusivity Dy, the
presented results can be scaled to yield results for other
Dy values and cylinder sizes. Consider the transverse
diffusivity [23], which depends only on R, Dy, and time ¢
(specifically independent of » and L; see Fig. 1). Two
systems 4 and B are said to be in correspondence (as in
thermodynamic corresponding states [24]) if
D;I;l‘A :D;)éfzgtg’ (5)

A B

because Dyt/R? is the only dimensionless parameter [25]
characterizing the problem. Thus, the time-dependent
transverse diffusivities of 4 and B are related by the di-
mensionless ratios

DA(IA) _ DB(fB) ’ (6)
Dy 4 Dy p

provided the times ¢, and ¢ are related as in Eq. (5).
Similar scaling applies for the longitudinal diffusion
(along the tube axis in Fig. 1), except that D, now de-
pends on Dy, ¢, R, r, and L. So, systems are in corre-
spondence provided they obey Eq. (5) and have similar
shapes (i.e., the same ratios L/R and r/R).

The simulations were used to calculate mean-squared
displacements in each of the directions x, y, and z. Time-
dependent diffusivities were defined from the mean-
squared displacements as

DN = (Ax)*/2t and
DY = |(Ax)’ + (&y)” + (A2)7] f6r,

in 1-D and 3-D. The NP (narrow pulse) designation
serves to remind that PFG experiments with narrow
pulses in the b — 0 limit yield the diffusivity values from
mean-squared displacement, (7). In addition, normal-
ized NMR signal amplitudes S were calculated in the
wide-pulse or spin-echo (SE) case from the NMR spin-
precessional phase shifts ¥, with S = (e) = (cosy),
where the average is over the N particles in the simula-
tion. In general, for a gradient along the x-axis,

t
lp(t) = '}// . G(,/)X(tr) dl‘,7 (8)
=

(7)

where Gy is the effective gradient (i.e., the actual gra-
dient with sign inversion at the © pulse). We employ a
static (constant) actual gradient, corresponding to a
square wave effective gradient: G from time zero to /2
and —G from ¢/2 to t. The integral is re-written as a
discrete sum

T/2 T
Yy = 7G(A1) (ij - Z x,-), 9)
=0 J=T)2

where At is the time step duration and j is the (integer)
time-step-number, with 7 =¢/At. For this gradient
waveform, the weighting parameter b is given [26] by
12G(t/2)’2/3. Thus, the phase  for any particle can be
expressed in terms of its trajectory and b,

7/2 T
V) = \/12b/8 (A1) (ij -y x,>. (10)

J=T/2
For weak b, resulting in small spin phases ¥, (cosy) is
1 — (*)/2. Equating this to e *> = 1 — bD,, we obtain
the NMR-determined DS® with constant gradients, ta-
ken in the 5 — 0 limit,

DSt = [ 6(A?) /I}[ij Z r, (11)

J=T/2

where the overbar denotes averaging over all N parti-
cles. We note that the mathematics of the » — 0 limit are
the same as the Gaussian phase distribution approxi-
mation, for arbitrary b. Eq. (11) allows DSF to be com-
puted without explicitly considering the & = 0 limit.

The above discussion can readily be generalized to
gradient directions other than x. For an assortment of
randomly oriented objects, the three-dimensional pow-
der average wide-pulse diffusivity DSE can be computed
in a form similar to Eq. (11) as

/2 T 2
33

DSE = [6(At)2 /ﬁ]

=0 J=T/2
7/2 T 2 /2 T 2
|53 ¢ [Sa 3
=0 J=T/2 J=0 J=T/2

(12)

We note that many simulations of bounded diffusion
have been reported [11,16,27], some specifically relevant
to the MSS equation for surface-to-volume ratio [3,4,6].
Analytical approaches to restricted diffusion have been
reported [23,28], although these assume the Gaussian
phase approximation. The work here is focused upon
addressing the issues enumerated at the end of the In-
troduction, to assess the feasibility of MRI measure-
ments of local surface-to-volume ratio in lungs.

All determinations of initial positions and the direc-
tions of each step were performed with the random
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number generator provided by the GSL (GNU Scientific
Library), a numerical methods library for the C pro-
gramming language.

3. Tests

The computer simulation algorithm was thoroughly
tested to ensure its proper functioning. (i) For open
tubes ( = R in Fig. 1), the longitudinal diffusion D)? in
Eq. (7) was found to be very close to Dy. The typical
error was about 1%. (i) For closed tubes
(L=R=150pm and r = 0), the long-time asymptotic

values of (Az)* and (Ax)® were compared to the theo-
retical values of L?/6 and R?/2, respectively. Agreement
to better than 1% was found. (iii) We explicitly tested the
scaling formula (6), by comparing transverse diffusivities
of the same gas in cylinders of R =150 and 350 um.
After scaling times in the larger cylinders by (2.333)%,
according to Eq. (5), the data were the same to within
the numerical noise. (iv) Long-time longitudinal diffu-
sivity in the structure of Fig. 1 is bounded by D, < Dy
because of the restrictions by the partitions, and
D > Dy(r/R)*. This last bound uses the fraction of
open area of the partitions; D, would equal Do(r/R)?
in the case of L < r. The above inequalities were always
obeyed in the long-time limit.

4. Results

Simulations have been performed on cylinders with
the geometry presented in Fig. 1 for a wide range of
parameters. Representative results appear in Fig. 2 for
the cases of closed cells (r=0), partly open cells
(r=0.7R), and fully open cells (smooth-wall tubes,
r = R), from top to bottom. Diffusivities calculated from
the random-walk mean-squared displacements during
time ¢ (D}?) from Eq. (7) appear as solid curves. Open
circles represent the diffusivity calculated from the
NMR signal in the b = 0 limit, with a static-field gra-
dient (spin echo or wide pulse, SE). All the diffusivities
in Fig. 2 are three-dimensional orientational averages,
using Egs. (7) and (12). We note that the trends evident
in the results of Fig. 2 are confirmed in the many other
simulation results obtained but not shown here.

All of the diffusivities in Fig. 2 approach the free
value of Dy = 88 um?/ps at short times, as expected. In
the case of D3E, where the first point is at ¢ = 20 s, the
Dy value is never obtained. We note that the data should
decrease as /¢ at short times, resulting in an infinitely
negative slope at zero time. At short times, DSE de-
creases more slowly than does DYF. This is to be ex-
pected, since the NMR measurement with static
gradients (as opposed to the delta-spike gradients, NP)
measures a displacement over a time interval somewhat

80 E 124 E
Closed e NP Closed
o SE
b 1.0 QO o ° 4
)
p 200 0o
08}
1 o SE
0.6
80 1 1.2} -
@ b Partly Open Partly Open E
=
NE 1.0 g
=1 23000 o ~
\-:, 0.8} ©0 04 ¢ >
o ~
0.6 1 »n
1.2} 4
CR R °
1.0 ol %00,
Open
08} 4
0.6} 4
0 1 1 1 1 1 1 1
0 200 400 600 800 0 100 200 300 400
Time (us)

Fig. 2. Three-dimensional powder average diffusivities (at left) and surface-to-volume ratios S/V (at right) from Egs. (3a) and (3b), as functions of the
diffusion-measuring time. Results are shown for the cylindrical geometry of Fig. 1 with R = 150 pm and L = 150 pm. From top to bottom, the cases
treated are closed partitions (» = 0), partly open partitions (» = 105 pum, so the opening is 49% of the total area), and fully open (no partitions, » = R).
The solid curves are from mean-squared displacement and correspond to the narrow pulse (NP) NMR PFG experiment; the open circles are from
simulated NMR signal decays using a static gradient in the » = 0 limit (wide pulse or spin echo, SE). At right, the S/V is normalized by the actual

S/V calculated from geometry.
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smaller than ¢, as discussed below Eq. (2) . Hence, for a
given decrease in D(,, the static gradient NMR experi-
ment requires a somewhat larger time 7. At long times,
when most gas atoms have contacted the walls one or
more times, D§F becomes smaller than DYP. This de-
crease is due to motional averaging [23,26] during each
half of the NMR experiment (between the RF pulses
and from the n-pulse to the echo). Such averaging during
each gradient lobe clearly cannot occur with delta-spike
gradient pulses (NP measurement). At very long times,
one expects D3 to be determined completely by longi-
tudinal motion, because the transverse motion is fully
restricted. The t — oo limiting values of Ds of the closed
and open cases are thus expected to be 0 and Dy/3 (or
28.7 um?/ps), respectively. While ¢ = 1000 ps is not quite
long enough for these limits to attain, the data approach
the above values.

The D, data from the left panels of Fig. 2 were used
to calculate the surface-to-volume ratios S/ in the right
panels, using Egs. (3a) and (3b), for narrow and wide
pulses, respectively. The S/V values are normalized by
the actual S/V calculated from geometry. In all cases,
the S/V values are approximately correct at short times
and decrease at longer times. The decrease is, of course,
due to D;() approaching an asymptotic value at long
times, as discussed above.

In the case of the open smooth-wall tube, we con-
firmed that the increase in (S/V)yp above the actual
geometric value of 2/R is explained by including the
correction in the MSS formula (1) for surface curvature
[3]. We note that all of the other cases have corners and
sharp-edged holes on the interiors of the partitions, so
that these cases require additional corrections [3]. We
have not included such corrections, because they involve
curvatures and corner-angles that are not known a pri-
ori to the measurer.

The S/V values derived from D}? are within +15% of
the actual geometrical value for times < 150 ps. Over the
time window of 0-200ps, the S/V taken from DSE is
within the £15% range. We note that, in all three cases
shown in Fig. 2, this time window can be expressed as
including all values of DSE/Dj greater than 0.6. This is a
surprisingly large region for the validity of a formula
derived for the ¢ = 0, “barely restricted” limit. Indeed,
we note that the 200 us window, for the system of closed
cells, includes values of DSE/Djy as small as 0.25.

NMR signal amplitude decays for the static gradient
spin echo (wide pulse, SE) are presented in Fig. 3. The
time is held fixed as b is varied by varying the gradient
strength. In each case, the straight solid line represents
the slope of the initial decay, the » = 0 limit. Thus, the
negative of this slope is the true average restricted dif-
fusivity, equally weighting all the spins in the sample.
The open circles are the simulated NMR spin-echo de-
cays as functions of 4. In some cases, the deviation from
the simple exponential is positive while in others it is
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Fig. 3. NMR signal decays using full-width gradient pulses (SE case)
from random-walk simulations. The straight solid lines represent the
slope in the » = 0 limit; the negative of this slope is the average dif-
fusivity, weighting all particles equally. The open circles are the natural
logs of the normalized signal amplitudes S/S, as functions of . Up-
per: diffusion transverse to cylinder axis (R = 150 um, r and L are ir-
relevant). Middle: diffusion along axis, with L = 150 um, and closed
partitions (r = 0). Lower: diffusion along axis with partially open
partitions (L = 150 um, R = 150 pm, and » = 105 um). In all cases, the »
value at which the signal has decayed by 1/e is quite close to the value
from the straight line, so the 1/e value will yield a very close estimate
of the average diffusivity.

negative. We note that the simulations presented in
Fig. 3 are for N=100,000 particles. The fractional sta-
tistical noise, 1/ V/N, is about 0.3%; thus the decays in
Fig. 3 taken out to 2.5 factors of e are relatively free of
noise. This has been verified by repeating the same
simulation several times, in selected cases, with virtually
identical results.

The representative signal decays are displayed in
Fig. 3: (upper) with the gradient transverse to the cyl-
inder axis with R = 150 um and (middle and lower) with
a longitudinal gradient. This choice of cases avoids the
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necessity of forming a powder average signal-decay,
averaging over all cylinder (or gradient) orientations.
The middle panel is for closed end caps (L = 150 um;
r =0 and R is irrelevant) and the bottom panel is for
partly closed cells (L = 150 um, R = 150 pm, » = 105 pm,
so the end caps are 49% open fraction of area). For each
case, the decays were calculated at =60, 100, and
200 ps; the data selected to appear in Fig. 3 are at the
time values showing the largest deviation from single
exponential decay as a function of 5.

Over the first factor of e in the decays shown in Fig. 3,
the deviation from the straight line (simple exponential
decay) is very small, less than 5%. Thus, less than a 5%
error will occur if the NMR-determined diffusivity is
taken as 1/b*, where b* is the value of b for which the
signal has decayed by 1/e, instead of the negative of the
slope of the straight line (the » = 0 limit). The largest
deviations we have found in simulating many different
geometries as in Fig. 1 are about 15%, though these
occur with only a few sets of geometric parameters and
time. We note that the deviations considered here are
systematic errors. Measurement noise will result in
random or statistical errors in determining D that may
often be greater than the 5% systematic errors of Fig. 3.

Exact numerical results for the spin-echo (SE) decay
have been reported for a one-dimensional system of
uniformly spaced barriers (L = 150 um, in notation of
Fig. 1), using a matrix-product technique [29]. Those
results have been used here to derive a time-dependent
diffusivity using Eq. (4), for values of D, of 0.001, 0.1,
0.5, and 1.0. The D} values yield values of S/V using
Eq. (3b) with dimensionality d = 1; the results are pre-
sented in Fig. 4. This graph simultaneously reveals both

1.2 X\ —=—bD, = 0.001 m
v —e—bD =0.1
\ —A—bD, =05
'Y A A -
\ —v—bD, = 1.0
"\

S/V (norm.)

08 | | 1 | 1 |

Time (us)

Fig. 4. Surface-to-volume S/V from NMR spin echoes (wide pulse or
SE case) using Eq. (3b), normalized to the geometrical S/V. The sys-
tem is a one-dimensional array of partitions spaced 150pum. Exact
numerical calculations of the echo amplitude attenuation were per-
formed at several values of bDy. Time-dependent diffusivity was cal-
culated from Eq. (4).

effects: the inaccuracy in determining DPF outside the
b = 0 limit and the error in S/V encountered by working
outside the # = 0 limit. For short times and small 5Dy,
the S/V results are in excellent accord with the geo-
metrical value of 2/L.

At times of 40ps and longer, there is essentially no
dependence on the b value of the deduced S/V. Evi-
dently, the echo amplitude decays here are very nearly
single-exponential. As expected, with increasing time the
S/V value decreases in qualitative accord with the re-
sults of the right side of Fig. 2. We note that these one-
dimensional results cannot be compared directly to the
three-dimensional results of Fig. 2. In addition, the
L =150 um spacing of the partitions here leads to an
approximately threefold decrease in the characteristic
time scale, compared to Fig. 2, where the diameter is
300um (see Eq. (5)).

For times shorter than 40 ps, the S/V depends on the
value of b, indicating that the echo amplitude decays are
not single-exponential here. This non-exponential na-
ture at short times has been analyzed in a recent work
[12]. In the limit of zero time, this effect results in errors
of 22% in S/V, using bDy = 1. It must be noted, how-
ever, that the large errors result from the high sensitivity
of S/V to small changes in D(SIE in Eq. (3b) at short times
where D<St'>5 and Dy are nearly equal. In real experiments,
this short-time region must be avoided anyway because
S/V would be unduly sensitive to random noise in D<St')3.
For S/V values within +15% of the actual geometrical
S/V, with bDy = 1, times between 10 and 125 ps can be
used.

5. Conclusions

Computer simulations of diffusive random-walks and
numerical calculations have explored the time-depen-
dent diffusion coefficient D, in restricted diffusion. The
chosen geometries are periodic partitions in 1-D for the
numerical work. The simulations modeled the interiors
of cylinders with partially closed, periodically spaced
partitions, a model of lung small-airways. The surface-
to-volume ratios S/V determined from the simulations
using the Mitra—Sen—Schwartz and de Swiet-Sen
formulas (1) and (2), strictly valid only as time ¢ — 0,
are compared to the exact values of the simulated
geometries.

The first major result is that reasonably accurate S/V
values (within +15%) are obtained well outside the limit
of time ¢+ — 0. For closed vessels, the useful range ex-
tends to the remarkably small value of D, /Dy = 0.25;
for fully or partially open vessels, the useful range is
somewhat smaller. The errors encountered by working
outside the r — 0 limit can be reduced by use of the
present results as a guide. Second, the NMR signals in
restricted diffusion are not purely exponentially decaying
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functions of the parameter . Nevertheless, the difference
between the diffusion values taken from the initial slope
(b — 0 limit which uniformly weights all spins) and the
1/e point of the decay (an experimentally practical
scheme) remains small in all of our simulations. These
results apply to both the narrow pulse and wide pulse
experiments, the latter being equivalent to a static (dc)
gradient in a spin-echo sequence, which makes minimal
demands on the gradient hardware.

Thus, diffusion-NMR determinations of lung surface-
to-volume ratios using inhaled gases appear to be quite
feasible.
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